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Information Infrastructure to provide needed services to the New Jersey Department of Transpor-
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Council , New York State Department of Transportation, and the New York State Energy and 
Research Development Authorityand others, all while enhancing the center’s theme.

Education and Workforce Development 
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negotiation skills, psychology and sociology. And, she/he must be computer literate, wired to the 
web, and knowledgeable about advances in information technology. UTRC’s education and 
training efforts provide a multidisciplinary program of course work and experiential learning to 
train students and provide advanced training or retraining of practitioners to plan and manage 
regional transportation systems. UTRC must meet the need to educate the undergraduate and 
graduate student with a foundation of transportation fundamentals that allows for solving 
complex problems in a world much more dynamic than even a decade ago. Simultaneously, the 
demand for continuing education is growing – either because of professional license requirements 
or because the workplace demands it – and provides the opportunity to combine State of Practice 
education with tailored ways of delivering content.

Technology Transfer

UTRC’s Technology Transfer Program goes beyond what might be considered “traditional” 
technology transfer activities. Its main objectives are (1) to increase the awareness and level of 
information concerning transportation issues facing Region 2; (2) to improve the knowledge base 
and approach to problem solving of the region’s transportation workforce, from those operating 
the systems to those at the most senior level of managing the system; and by doing so, to improve 
the overall professional capability of the transportation workforce; (3) to stimulate discussion and 
debate concerning the integration of new technologies into our culture, our work and our 
transportation systems; (4) to provide the more traditional but extremely important job of 
disseminating research and project reports, studies, analysis and use of tools to the education, 
research and practicing community both nationally and internationally; and (5) to provide 
unbiased information and testimony to decision-makers concerning regional transportation 
issues consistent with the UTRC theme.
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1 Background

Subway demand in NYC has been on the rise, reaching 1.8 billion trips in 2014.

Overcrowding delays have extended to non-peak hours and weekends; weekend

overcrowding delays grew 141.2% in 2014-2015 (weekday overcrowding delays in-

creased 65.3% during the same period; NY Daily News, 2015). In addition to

delays, nonmonetary crowding costs include discomfort and a loss in security that

play against overall perceptions of public transportation. In fact, subway crime

has also been on the rise (NY Daily News, 2015). The evaluation of projects such

as investment in open gangway cars (MTA is planning to spend $52.4 million on

10 of these cars; Wired, 2016), which are expected to increase capacity up to 10%,

requires correct measurement of crowding externalities.

2 Objectives

The objective of this project is to explore the role of visual information in deter-

mining the users’ subjective valuation of multidimensional trip attributes that are

relevant in decision-making, but are neglected in standard travel demand mod-

els. More specifically, this project aims at analyzing overcrowding perceptions in

discrete choice experiments, with the use of visualization of passenger density in

subway cars. Data will be collected in New York City, but a pretest with a small

sample size will be performed with international collaborators in the subway sys-

tem of Santiago, Chile.
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3 Introduction

Livable and sustainable communities need transportation options that are afford-

able; efficient in their use of public space, operation (travel time, frequency),

and energy use; accessible, reliable, comfortable, secure, and safe; and that ex-

hibit high-levels of quality of service. However, standard demand models focus

almost exclusively on the valuation of instrumental tradeoffs between direct mon-

etary costs and time (as measured by the ‘value of time’, or VOT). Consequently,

transportation planning – including the design of transit systems and of bicy-

cling infrastructure – neglects the role of those extended attributes that explain

transportation decisions beyond VOT. In fact, VOT fails to explain demand sit-

uations where people may choose a subway/transit route that takes longer but

is less crowded. In addition, travel demand estimates coming from models that

omit variables such as crowding, convenience, comfort, security, and overall quality

are biased, potentially leading to incorrect forecasts and decisions. Although the

consequences of omitting relevant attributes is well known within transportation

modelers and practitioners, it is the inherent difficulty of measuring qualitative

attributes that explains their omission.

The project thus aims at better understanding the subjective valuation of subway

crowding passenger congestion in both trains and platforms in NYC.

In this project, visual information is exploited to determine the users’ economic

valuation of hard-to-illustrate, multidimensional trip attributes. Furthermore, seat

availability, passenger density, and crowding perceptions have significant behav-

ioral and operational impacts, including effects on waiting and in-vehicle times

(Milkovits, 2008; Tirachini, 2013), travel time variability, vehicle and route choices
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(Leurent and Liu, 2009; Raveau et al., 2011), passenger satisfaction and wellbe-

ing, and on the optimal determination of fares (crowding externalities increase the

marginal cost of traveling; see Kraus, 1991), frequency (Jara-Díaz and Gschwen-

der, 2003), and vehicle size (number of seats per hour).

This project implements discrete choice experiments with qualitative experimen-

tal attributes for crowding and related externalities, which are contextualized in

the form of visuals.

Using visual information in stated preference studies is an emerging topic in dis-

crete choice analysis, but there are several challenges in the selection of visual

information and in the construction of quantitative measures from the images for

model estimation and inference. In particular, this project aims at analyzing the

sensitivity of the model estimates to alternative ways of representing passenger

density.

Results from this project are relevant to the USDOT goals of livable communities

and environmental sustainability, as well as to the UTRC focus areas 1 and 3.
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4 Synthesis of Literature Review

The consideration of quality-of-service (QoS) of transit systems (e.g., accessibility,

reliability, comfort, convenience, safety, security) is not only key for economic and

engineering design of their operation (for a review see Litman, 2008) but also for

better addressing issues of urban sustainability, inequality, and mobility. For in-

stance, perceived safety, comfort, and ease of access may create incentives for the

use of public spaces (Khisty, 1994; Shriver, 1997) and of travel modes where expo-

sure to the environment is higher, such as transit, walking, or cycling (Antonakos,

1994; Zacharias, 2001; Hunt and Abraham, 2007). However, these QoS attributes

are multidimensional, users perceive them in a qualitative manner, and require

special methods for their correct measurement (such as hybrid choice models that

integrate perceptions into demand; see Daziano, 2015; Walker and Ben-Akiva,

2002; Daziano, 2012; and Hurtubia, 2014).

Regarding QoS, passenger crowding (in transit access-ways, stations/platforms,

and vehicle) has been determined to be one of the main determinants of travel

mode choice. As reviewed by Tirachini (2012), a large set of factors have been

associated with high levels of crowding, including perceptions of risk to personal

safety and security (Cox et al., 2006; Katz and Rahman, 2010), propensity to ar-

rive late at work (Mohd Mahudin et al., 2011), and a possible loss in productivity

for passengers that work while sitting on a train (Fickling et al., 2008; Gripsrud

and Hjorthol, 2012), stress and feelings of exhaustion (Lundberg, 1976; Mohd

Mahudin et al., 2011; 2012), a feeling of invasion of privacy (Wardman and Whe-

lan, 2011), potential ill-health (Cox et al., 2006; Mohd Mahudin et al., 2011), and

increased anxiety (Cheng, 2010). The few travel demand models that include user
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sensitivity to crowding are usually specified in terms of load factors, probability of

finding an available seat, and density of standees (Douglas and Karpouzis, 2005;

Kim et al., 2009; Whelan and Crockett, 2009; Hensher et al., 2011a; Fröhlich et al.,

2012). Using these specifications, it has been shown that the VOT for both waiting

and in-vehicle times increases with the number of people in stations and vehicles,

inducing a crowding externality or crowding cost. From a design perspective, the

inclusion or omission of the crowding cost influences the optimal values of service

frequency, vehicle size and fare level, among other supply side variables (Kraus,

1991; Jara-Díaz and Gschwender, 2003; Tirachini et al., 2010a; 2010b). Using dis-

crete choice models, it is possible to estimate a crowding multiplier (CM), which

is the ratio of the VOT under crowded conditions to the VOT under uncrowded

conditions (see Whelan and Crockett, 2009).

QoS visualization in discrete choice experiments has recently emerged as an al-

ternative to text descriptions of qualitative attributes (Strazzera, 2010; Hensher

et al, 2011). The idea is to include images that explicitly show the physical fea-

tures of the experimental conditions in each choice scenario. For example, in the

specific case of crowding, Hensher et al. (2011) used as experimental attributes

bird?s-eye views (2-D diagrams) of different levels of occupancy for bus and train.

Although the use of visual information is promising, there are several challenges

that need to be addressed, including the design of the image itself, behavioral

bias in processing the image, and the translation of the attributes in the image to

quantitative measures that can be used for model estimation.
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5 Summary of Work Performed

5.1 Preliminary Case Study in Santiago of Chile (Tirachini

et al., 2017)

As case study of the methodology derived as part of this project, we analyzed

crowding perceptions in the subway (Metro) system of Santiago, Chile. This case

study was published in Transportation Research Part A (Tirachini et al., 2017);

the full paper can be read in Appendix.

In sum, a sample of N=413 respondents (210 online surveys, 203 face-to-face sur-

veys) among users of the Metro system of Santiago was used to analyze three types

of crowding visualization, namely: i) text, ii) 2D diagrams (bird’s-eye view), and

iii) photos taken inside a metro car (edited with a photo edition software, if neces-

sary, to match with the exact number of persons required for a particular passen-

ger density level). A basic Multinomial Logit (MNL) model, a Latent Class (LC)

model and a Mixed Logit (ML) model were estimated and crowding multipliers

were computed for each of these models, considering the three types of crowding

representation. Estimates did not reveal significant effects of the differing crowd-

ing representations. The conclusion is that there is no evidence for preferring one

type of visualization over the others in discrete choice experiments for crowding

valuation purposes.
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5.2 Main Case Study in New York City

5.2.1 Survey Instrument

The survey instrument was implemented online using the Qualtrics platform. The

instrument was designed considering the following sections:

1. Screening: only adults living in the New York City metro area (in the

specific counties of Kings, Queens, New York, Bronx, and Richmond), that

regularly commute and frequently take the subway were invited to complete

the survey.

2. Background information: regarding household and personal income and

household composition

3. Last subway trip: a series of questions aimed at collection information

about the last subway trip of the respondent, including purpose, time of the

day, day of the week, frequency, areas of origin and destination, subway line

or lines used, length of the trip, combination with other modes, trip cost,

overall satisfaction

4. Crowding evaluation: frequency of experience of differing crowding con-

ditions, ratings of crowding levels in terms of comfort and security.

5. Discrete choice experiment: as detailed below.

6. Sociodemographics: standard sociodemographics including gender, eth-

nicity, age, and education.

The discrete choice experiment presented static online choice scenarios focused on

in-subway-car time. The use of images was used in the form of bird’s-eye views of
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Figure 1: Crowding levels
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trains to schematically represent the experimental crowding conditions (Fig 1.)

5 levels of crowding were considered, with corresponding passenger densities rang-

ing from zero to technical capacity (6 passengers per square-meter). Dimensions

of the cross section of the train correspond to an average subway car.

The attributes followed those considered in the case study in Santiago, namely:

travel time, passenger density, and whether the passenger would travel standing

or seated. In addition to these attributes, travel cost was also considered so that

estimates of the valuation of travel time savings could be derived.

Figure 2: Discrete choice experiment sample

An efficient design was ran in the software NGene to generate the hypothetical

choice scenarios to present to the respondents. Figure 2 presents a sample of a

hypothetical choice scenarios as presented in the survey.
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5.2.2 Sample

We surveyed 1849 users of the New York City subway to understand the effect

of crowding in their travel decisions (Cox et al., 2006; Raveau et al., 2014; Tira-

chini et al., 2017). The following series of graphs summarizes composition of the

sample, including gender (Fig. 3), marital status (Fig. 4), employment (Fig. 5),

gender (Fig. 3), personal income (Fig. 6), household income (Fig. 7), and actual

frequency of subway use (Fig. 8).

Figure 3: Gender

Figure 4: Marital Status
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Figure 5: Employment

Figure 6: Personal Income

Figure 7: Household Income
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Figure 8: Frequency of Subway Crowding

5.3 Models for New York City

In the crowding choice experiment within the survey, each respondent chose an

alternative from a set of two hypothetical, unlabeled subway routes, with a max-

imum of 6 choice situations (See Figure 1). Each route was described in terms

of:

1. travel time (TT) in minutes,

2. travel cost (TC) in dollars per trip,

3. passenger density or occupancy level (OL) in passengers per square meter,

and

4. an indicator whether the passenger would travel standing (STAND), or

seated.

We consider a specification where the utility derived for individual i of class c

from making choice j in choice situation t is:

Ucitj = TTitjβ
c
i,1+TCitjβ

c
i,2+(TTitj×OLitj)αc1+(TTitj×OLitj×STANDitj)α

c
2+εitj (1)

12



5.3.1 Econometric models

One of the most flexible discrete choice models is the mixed mixed logit model

or mixture-of-normals logit (MON-MNL) (Greene and Hensher, 2013; Keane and

Wasi, 2013; Bujosa et al., 2010; Fosgerau and Hess, 2008). MON-MNL nests

the whole family of the most common logit models, from the multinomial logit

model (no preference heterogeneity), to the latent class logit (discrete distributions

of preference heterogeneity) and mixed logit models (continuous distributions of

preference heterogeneity).

MON-MNL is basically is logit model in which random parameters have a discrete-

continuous heterogeneity distribution (the mixture of normals). MON-MNL is

specified as follows. The population has C latent classes (i.e., components in the

mixture), and utility derived for individual i of class c from making choice j in

choice occasion t is:

Uitj = x
T
itjαc + z

T
itjβ

c
i + εitj, (2)

where i ∈ {1, . . . ,N}, j ∈ {1, . . . , J}, t ∈ {1, . . . , T }, and c ∈ {1, . . . , C}. Suppose we

distinguish between class-specific fixed parameters (x) and random parameters

(z). The alternative-specific characteristics xitj have a fixed marginal utility αc,

and zitj has random marginal utility βci (specific to class c). The error term εitj is

independent and identically distributed Type-I Extreme Value.

If individual i of class c chooses alternative j in choice occasion t, one can define

the choice indicator ditj = 1. For the sequence of choices made by the individual,

the conditional likelihood Li(αc,βci ) is:
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Li(αc,βci ) =
T∏
t=1

J∏
j=1

[Pitj]
ditj =

T∏
t=1

J∏
j=1

[ exp(xTitjαc + z
T
itjβ

c
i )∑J

k=1 exp(x
T
itkαc + z

T
itkβ

c
i )

]ditj
(3)

A latent class membership model w = (w1, . . . , wN), such that : P(wi = c) =

sc i ∈ {1, . . . ,N}, where 0 ≤ sc ≤ 1 and
∑C

1 sc = 1 completes specification of the

MON-MNL model.

Conditional on class membership, the random parameter βci is normally dis-

tributed with mean γc and variance-covariance matrix ∆c.

The loglilkelihood `(ψ) of the sample in terms of the unconditional likelihood

Pi(ψ) of individual i is:

`(ψ) =
N∑
i=1

ln
(
Pi(ψ)

)
=

N∑
i=1

ln

( C∑
c=1

{
sc

[ ∫
β

Li(αc,β)f(β|γc,∆c)dβ
]})

, (4)

where

ψ = {α1, s1,γ1,∆1, . . . ,αC, sC,γC,∆C}. (5)

The loglikleihood above can be maximized by simulation to derive the maximum

simulated likelihood estimator of the model.

5.3.2 Modeling Results

With the collected choice microdata we estimated MON-MNL with two and three

classes, and also compared the estimates with the traditional logit (MNL), as well
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as with a mixed logit model (MMNL) with normal and lognormal heterogeneity

distributions.

Table 1 presents the estimates of the MNL and latent class logit model, considering

3 classes.

Table 1: MNL and Latent Class MNL Results (Preference Space)

MNL
Latent Class (LC) MNL

Class 1 Class 2 Class 3
Estimate z-value Estimate z-value Estimate z-value Estimate z-value

ASC 0.12 3.64 -0.63 -2.87 0.52 5.40 6.81 1.01
Time:Density -1.36 -32.65 -4.98 -6.02 -0.81 -9.66 -48.21 -0.85
Time:Density:Stand -0.58 -13.47 -3.50 -4.46 -0.54 -4.22 34.17 0.95
Cost -1.39 -38.39 -2.91 -7.39 -1.43 -18.66 -8.06 -0.95
Time -0.66 -20.12 -0.49 -2.03 -0.55 -6.11 -21.78 -0.75
Class weight - - 0.50 - 0.43 - 0.07 -
Loglikelihood -3018.5 -2927.2
Note: Time is in minutes and density is in passenger per square meter, and both are normalized by 10.

All estimates have the expected signs (negative), indicating that all the considered

attributes provoke a disutility to the subway users. Since the marginal utilities

are hard to interpret, table 4 summarizes the willingness to pay for reducing travel

time in one hour as a function of passenger density.

Table 2: Willingness to Pay for Travel Time Saving ($/hour)
Density

(Passenger per square meter)
MNL

Latent Class (LC) MNL
Class 1 Class 2 Class 3

Standing
1 3.7 2.8 2.9 17.3
3 5.4 6.3 4.0 19.4
6 7.9 11.5 5.7 22.5

Sitting
1 3.4 2.0 2.7 19.8
3 4.6 4.1 3.3 27.0
6 6.4 7.2 4.4 37.8

As expected, when passenger density is higher, individuals are willing to pay more

to save one marginal unit of travel time. Although the value of time of class 3

of the latent class logit is really high, we note that the marginal utilities are not

significant.
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Table 3: Mixture-of-Normal (MON) MNL in Willingness to Pay Space
Class 1 Class 2 Class 3

Estimate z-value Estimate z-value Estimate z-value
Marginal Utility of cost/scale (mean) -3.48 -6.57 -2.13 -9.55 -0.98 -7.63
Marginal Utility of cost/scale (std dev) - - 0.64 2.80 - -
WTP
time:dens:stand (mean) 0.089 2.00 1.12 5.10 -0.28 -1.03
time (mean) 0.42 9.00 0.29 4.84 0.92 4.20
time:dens (mean) 0.70 11.34 0.96 7.96 5.40 6.42
L11 (time,time) -0.18 -2.77 - - - -
L21 (time, time:dens) -0.29 -4.12 - - - -
L22 (time:dens,time:dens) - - 0.47 5.50 2.71 5.73
Class membership parameters
I(Male) -0.54 -2.44 - -
I(Own or lease a car) - - -0.48 -1.71
I(Single) 0.87 3.64 0.74 2.89
I(Caucasian) - - -0.48 -1.70
I(Age 50+) - - 0.74 2.19
I(Personal income >$100K) -0.37 -1.53 -1.39 -2.87
Loglikelihood -2742.9
Note: Time is in minutes and density is in passenger per square meter, and both are normalized by 10.

Figure 9: Discrete choice experiment sample
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Figure 10: Discrete choice experiment sample

6 Conclusions and Recommendations

In this project two case studies were performed to analyze the tradeoff between

travel time and crowding in two different subway systems. The valuation of trav-

eling standing and sitting was also derived and examined.

In the pretest carried out in the subway system of Santiago of Chile, three trea-

ments for passenger density visualization were tested, namely: text description

(dominant tool in applied work analyzing comfort), 2D diagrams (bird?s-eye view),

and actual (and yet controlled) photos. Using discrete choice models, it was de-

termined that no evidence could be found of perception bias due to visualization

of crowding conditions, meaning that in our sample crowding visualization has no

impact on preferences.

Given the results of the Santiago case study, in the case of New York City only

2D visualization was used to represent passenger density conditions in the discrete
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choice experiments. Unlike Santiago, in New York City we also included travel

cost as an experimental attribute to add the possibility of deriving estimates of

the value of time. In fact, we estimated a flexible nonparametric choice model in

the form of a mixture of normals logit (MON-MNL) model. MON-MNL models

with two and three mixture components were estimated and also compared to

the estimates with MNL and MMNL with normal and lognormal heterogeneity.

Table 4 shows simulated means of value of time (VOT) estimates under different

crowding conditions for these models. As expected, when passenger density is

higher, individuals are willing to pay more to save one marginal unit of travel

time.

Table 4: Estimates of the mean VOT ($/hr) under varying passenger density

Density MNL MMNL (Normal) MMNL (Lognormal) MON-MNL (2 Classes)
Standing

Class 1
1 3.8 3.6 3.2 2.5
3 5.5 5.2 4.8 5.4
6 8.0 7.7 7.1 9.9

Class 2
1 3.4
3 4.4
6 6.0

Sitting)

Class 1
1 3.6 3.3 2.9 2.3
3 4.7 4.4 4.0 4.8
6 6.5 6.0 5.5 8.6

Class 2
1 3.1
3 3.6
6 4.4

Note: Density is in passengers per square meter.

Whereas the MON-MNL model with two classes resulted into statistically signifi-

cant estimates of all parameters (ψ), the model with three classes yield statistically

insignificant estimates for all parameters of one class, suggesting the possibility of

only two classes in the data. VOT estimates indicate that subway route choice of

class 1 is more sensitive to crowding than that of class 2.

From the VOT estimates, crowding multiplier estimates were derived (Table 5).
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On the one hand, the MNL, mixed logit with normally distributed parameters

and mixed logit with lognormally distributed parameters produce average crowd-

ing multipliers that are almost undistinguishable: for the average subway rider

traveling seated in a subway car at technical capacity (6 passengers per square

meter) travel time bothers twice as much as traveling on an empty subway car.

If the passenger is standing, travel time bothers the passenger 15% more. On the

other hand, from the mixture-of-normals logit specification it is very clear to see

one class that is relatively less sensitive to crowding, with crowding multipliers

that are around 80% of the value of the MNL and MMNL average results, and a

class that is very sensitive to crowding. For the segments of subway riders that

are very sensitive to crowding, travel time under extreme overcrowding (technical

capacity) while standing is perceived as 4.4 times worse than under zero passenger

density. Even if the passenger is seated the crowding multiplier at 6 passengers per

square meter is 4.2. In fact, the crowding multipliers between standing and sitting

conditions are not very different for this class of riders, which can be interpreted

again as travelers that focus on comfort in terms of crowding much more than the

possibility of traveling seated.

In terms of international comparisons, our estimates are closer to those reported for

London than those from other cities such as paris and Hong Kong. For example,

the London crowding multiplier when standing at technical capacity has been

determined as 2.2, and 1.8 at 3 passengers per square meter (Whelan and Crockett,

2009). The London sitting crowding multipliers are lower than our estimates at

1.55 (6 passengers per square meter) and 1.28 (3 passengers per square meter). Our

estimates are also close to the crowding multipliers that we derived for Santiago

(Tirachini et al., 2017), which are summarized below in tables 6 and 7
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Table 5: Crowding multipliers under varying passenger density in NYC

Density MNL MMNL (Normal) MMNL (Lognormal) MON-MNL (2 Classes)
Standing

Class 1
1 1.11 1.08 1.05 1.11
3 1.61 1.55 1.58 2.40
6 2.34 2.30 2.34 4.40

Class 2
1 1.09
3 1.41
6 1.92

Sitting

Class 1
1 1.09 1.10 1.06 1.12
3 1.42 1.47 1.47 2.34
6 1.96 2.00 2.02 4.2

Class 2
1 1.09
3 1.26
6 1.54

Note: Density is in passengers per square meter.

Table 6: Santiago crowding multipliers: Sitting conditions

MNL ML LC
Mean Mean Median Class 1 Class 2

pax/m2 Est. St. Err Est. St. Err Est. St. Err Est. St. Err Est. St. Err
1 1.10 0.01 1.57 0.16 1.11 0.01 1.33 0.06 1.02 0.01
3 1.30 0.02 2.71 0.49 1.33 0.04 1.98 0.18 1.06 0.02
6 1.60 0.04 4.42 0.97 1.67 0.08 2.95 0.35 1.13 0.03

The subjective crowding valuation estimates that were be produced in this project

–and the methodology proposed to produce those estimates– are relevant in as-

sessing welfare improvements that come from a more efficient use of public space

devoted to transportation. As we conclude in Tirachini et al. (2017), “Regarding

policy implications, the estimated crowding multiplier should be tried in the eval-

uation of changes to the existing metro network and service in, for example, the

number of seats per train or increasing/reducing the service frequency in peak and

Table 7: Santiago crowding multipliers: Standing conditions

MNL ML LC
Mean Mean Median Class 1 Class 2

pax/m2 Est. St. Err Est. St. Err Est. St. Err Est. St. Err Est. St. Err
1 1.17 0.01 2.02 0.29 1.16 0.02 1.56 0.09 1.07 0.01
3 1.50 0.03 4.05 0.88 1.49 0.06 2.67 0.27 1.20 0.02
6 2.00 0.05 7.10 1.76 1.98 0.11 4.33 0.54 1.39 0.04
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off-peak periods (as analysed by Tirachini et al. (2014) for buses and de Palma

et al. (2015) for trains). Without a crowding disutility, increasing train frequency

only has a value on reducing waiting time. The approach presented here can be

used to estimate the effect of that intervention on the comfort of travel time.

Finally, we cannot confirm that crowding multipliers obtained from stated prefer-

ences might be larger than those from revealed preferences, as suggested by Kroes

et al. (2014) and Hörcher et al. (2017), because we found mixed results when com-

paring different cities and research methods. The advent of large AFC and AVL

databases for the estimation of crowding and standing externalities (as recently

advanced by Tirachini et al. (2016) and Hörcher et al. (2017), with the implemen-

tation of route choice methods) paves the way for the extended use of revealed

preferences for the economic analysis of crowding discomfort and other quality-of-

service attributes in the near future. It is expected that as more RP-based results

arise, a clearer picture of potential stated preferences biases will be obtained.”
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Bj́’orklund, G. and Sẃ’ardh, J. (2015). Valuing in-vehicle comfort and crowd-

ing reduction in public transport. 2015 hEART Conference, Copenhagen,

September.

Borjesson, M., Fosgerau, M., and Algers, S. (2012). Catching the tail: Empirical

identification of the distribution of the value of travel time. Transportation

Research Part A: Policy and Practice, 46(2):378 – 391.

Bujosa, A., Riera, A., and Hicks, R. L. (2010). Combining discrete and continuous

representations of preference heterogeneity: a latent class approach. Environ-

mental and Resource Economics, 47(4):477–493.

Cheng, Y.-H. (2010). Exploring passenger anxiety associated with train travel.

Transportation, 37(6):875–896.

Cox, T., Houdmont, J., and Griffiths, A. (2006). Rail passenger crowding, stress,

health and safety in britain. Transportation Research Part A: Policy and

Practice, 40(3):244–258.

Daly, A., Hess, S., and de Jong, G. (2012). Calculating errors for measures derived

from choice modelling estimates. Transportation Research Part B: Method-

ological, 46(2):333 – 341. Emerging and Innovative Directions in Choice Mod-

eling.

Daly, A., Hess, S., and Train, K. (2011). Assuring finite moments for willingness

to pay in random coefficient models. Transportation, 39(1):19–31.

22



de Palma, A., Kilani, M., and Proost, S. (2015). Discomfort in mass transit and

its implication for scheduling and pricing. Transportation Research Part B:

Methodological, 71:1 – 18.

Fernï¿œndez, J. E., de Cea, J., and Malbran, R. H. (2008). Demand responsive

urban public transport system design: Methodology and application. Trans-

portation Research Part A, 42(7):951–972.

Fosgerau, M. and Hess, S. (2008). Competing methods for representing random

taste heterogeneity in discrete choice models.

Gómez-Lobo, A. (2012). The ups and downs of a public transport reform: the

case of transantiago. Serie documentos de trabajo SDT354, Universidad de

Chile, Departamento de Economía, Santiago, Chile.

Greene, W. H. and Hensher, D. A. (2003). A latent class model for discrete

choice analysis: Contrasts with mixed logit. Transportation Research Part B:

Methodological, 37(8):681–698.

Greene, W. H. and Hensher, D. A. (2013). Revealing additional dimensions of pref-

erence heterogeneity in a latent class mixed multinomial logit model. Applied

Economics, 45(14):1897–1902.

Haywood, L. and Koning, M. (2015). The distribution of crowding cost in public

transport: new evidence from paris. Transportation Research Part A: Policy

and Practice, 77:182–201.

Haywood, L., Koning, M., and Monchambert, G. (2017). Crowding in public

transport: Who cares and why? Transportation Research Part A: Policy

and Practice, 100:215 – 227.

23



Hensher, D., Rose, J., and Collins, A. (2011). Identifying commuter preferences for

existing modes and a proposed metro in sydney, australia with special reference

to crowding. Public Transport, 3(2):109–147.

Hurtubia, R., Guevara, A., and Donoso, P. (2015). Using images to measure quali-

tative attributes of public spaces through sp surveys. Transportation Research

Procedia, 11:460–474.

Hörcher, D., Graham, D. J., and Anderson, R. J. (2017). Crowding cost estimation

with large scale smart card and vehicle location data. Transportation Research

Part B: Methodological, 95:105 – 125.

Keane, M. and Wasi, N. (2013). Comparing alternative models of heterogeneity in

consumer choice behavior. Journal of Applied Econometrics, 28(6):1018–1045.

Kroes, E., Kouwenhoven, M., Debrincat, L., and Pauget, N. (2014). Value of

crowding on public transport in ï¿œle-de-france, france. Transportation Re-

search Record, 2417:37–45.

Lam, W. H., Cheung, C.-Y., and Lam, C. (1999). A study of crowding effects

at the hong kong light rail transit stations. Transportation Research Part A:

Policy and Practice, 33(5):401 – 415.

Legrain, A., Eluru, N., and El-Geneidy, A. M. (2015). Am stressed, must travel:

The relationship between mode choice and commuting stress. Transportation

Research Part F: Traffic Psychology and Behaviour, 34:141 – 151.

Mahudin, N. D. M., Cox, T., and Griffiths, A. (2012). Measuring rail passenger

crowding: Scale development and psychometric properties. Transportation

research part F: traffic psychology and behaviour, 15(1):38–51.

24



Motoaki, Y. and Daziano, R. A. (2015). A hybrid-choice latent-class model for the

analysis of the effects of weather on cycling demand. Transportation Research

Part A: Policy and Practice, 75:217–230.

Munizaga, M. A. and Palma, C. (2012). Estimation of a disaggregate multimodal

public transport origin destination matrix from passive smartcard data from

santiago, chile. Transportation Research Part C: Emerging Technologies,

24:9 – 18.

Muñoz, J. C., Batarce, M., and Hidalgo, D. (2014). Transantiago, five years after

its launch. Research in Transportation Economics, 48:184–193.

Raveau, S., Guo, Z., Muñoz, J. C., and Wilson, N. H. (2014). A behavioural com-

parison of route choice on metro networks: Time, transfers, crowding, topology

and socio-demographics. Transportation Research Part A: Policy and Prac-

tice, 66:185–195.

Rizzi, L. I., Limonado, J. P., and Steimetz, S. S. (2012). The impact of traffic

images on travel time valuation in stated-preference choice experiments. Trans-

portmetrica, 8(6):427–442.

Rose, J. M., Bliemer, M. C., Hensher, D. A., and Collins, A. T. (2008). Design-

ing efficient stated choice experiments in the presence of reference alternatives.

Transportation Research Part B: Methodological, 42(4):395–406.

Sarrias, M. and Daziano, R. (2015). gmnl: Multinomial Logit Models with

Random Parameters. R package version 1.0.

Tirachini, A., Hensher, D. A., and Rose, J. M. (2013). Crowding in public trans-

port systems: Effects on users, operation and implications for the estimation of

25



demand. Transportation Research Part A: Policy and Practice, 53(0):36 –

52.

Tirachini, A., Hensher, D. A., and Rose, J. M. (2014). Multimodal pricing and

optimal design of urban public transport: The interplay between traffic con-

gestion and bus crowding. Transportation Research Part B: Methodological,

61(0):33 – 54.

Tirachini, A., Hurtubia, R., Dekker, T., and Daziano, R. A. (2017). Estimation

of crowding discomfort in public transport: Results from Santiago de Chile.

Transportation Research Part A: Policy and Practice, 103:311–326.

Tirachini, A., Sun, L., Erath, A., and Chakirov, A. (2016). Valuation of sitting and

standing in metro trains using revealed preference. Transport Policy, 47:94–

104.

Train, K. (2009). Discrete Choice Methods with Simulation. Cambridge Uni-

versity Press.

Vedel, S. E., Jacobsen, J. B., and Skov-Petersen, H. (2017). Bicyclists’ preferences

for route characteristics and crowding in copenhagen a choice experiment study

of commuters. Transportation Research Part A: Policy and Practice, 100:53

– 64.

Vovsha, P., Simas Olivera, M., Davidson, W., Chu, C., Farley, R., Mitchell, M.,

and Vyas, G. (2013). Statistical analysis of transit user preferences including

in-vehicle crowding and service reliability. 92nd Annual Meeting of the Trans-

portation Research Board (TRB).

Wardman, M. and Whelan, G. (2011). Twenty years of rail crowding valuation

26



studies: Evidence and lessons from british experience. Transport Reviews,

31(3):379–398.

Whelan, G. and Crockett, J. (2009). An investigation of the willingness to pay

to reduce rail overcrowding. In Proceedings of the first International Choice

Modelling Conference, Harrogate, England.

Yï¿œï¿œez, M. F., Mansilla, P., and Ortï¿œzar, J. d. D. (2010). The santiago

panel: measuring the effects of implementing transantiago. Transportation,

37(1):125–149.

27



Appendix: Tirachini, Hurtubia, Dekker, and Daziano
(2017).

Original article with case study in Santiago, Chile published in Transportation
Research Part A.

Please cite as:

Tirachini, A, R Hurtubia, T Dekker, RA Daziano. (2017). Estimation of crowding
discomfort in public transport: Results from Santiago de Chile. Transportation
Research Part A: Policy and Practice 103, 311-326.

28



Estimation of crowding discomfort in public
transport:

results from Santiago de Chile

Alejandro Tirachinia, Ricardo Hurtubiab,
Thijs Dekkerc and Ricardo A. Dazianod

March 15, 2018

a Transport Engineering Division, Civil Engineering Department, Universidad de
Chile, Santiago, Chile. Email: alejandro.tirachini@ing.uchile.cl

b School of Architecture and Department of Transport Engineering and Logistics,
Pontificia Universidad Católica de Chile, Santiago, Chile. Email: rhg@ing.puc.cl

c Institute for Transport Studies (ITS), University of Leeds, UK. Email:
t.dekker@leeds.ac.uk

d School of Civil and Environmental Engineering, Cornell University, Ithaca NY
14853, USA. Email: daziano@cornell.edu

Abstract

The relationship between train occupancy, comfort and perceived security is
analysed, using data from a survey and stated choice (SC) study of users of
Santiago’s Metro (subway) system. Mode choice models where crowding is
one of the main explanatory variables are estimated and crowding multipliers
to measure its relevance on travel time disutility for sitting and standing are
computed. An international comparison with previous studies from London,
Paris, Singapore and Sweden is presented. The type of estimated models
include Multinomial Logit, Mixed Logit, and Latent Class models. Results
show that there is significant heterogeneity in crowding perception across
the population. Users classes with low and high crowding multipliers are
identified, in which gender, age and income play a role. In the SC survey,
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occupancy levels were shown with three alternative forms of representation
(text, 2D diagram or photo), however we did not find relevant influences of
the different forms of representation on crowding perception.

A Introduction

In public transport, crowding refers to a subjective perception of the physical
phenomenon represented by a high density of passengers in vehicles and at stations,
stops and access-ways. In-vehicle crowding is, after price and travel time, one of
the most important explanatory variables of mode choice. This is particularly true
for public transport modes where high levels of crowding can result in physical
discomfort, psychological burden and perceived risk and insecurity (Cox et al.,
2006; Cheng, 2010; Mahudin et al., 2012). Moreover, crowding externalities (e.g.
slower boarding and alighting from vehicles, increasing waiting times) have an
important effect on the overall level of service and optimal fare of public transport
systems (Tirachini et al., 2014).

Crowding in public transport is a common phenomenon in Santiago, Chile. Its
city-wide integrated public transport system launched in February 2007, also
known as the Transantiago system (Muñoz et al., 2014; Munizaga and Palma,
2012), deploys full fare integration between buses and Metro through the use of a
single (smartcard) payment method. The implementation of Transantiago heavily
loaded the metro network, making it the main artery of the system (Gómez-
Lobo, 2012; Muñoz et al., 2014). The total number of daily passengers served
by metro duplicated overnight and crowding conditions in the trains became ex-
treme, reaching 6 passengers per square meter or more during peak hours1. This
triggered many behavioural responses from the users ranging from selecting dif-
ferent modes of transport (there has been an increase in car and bicycle use) to
route choices that, in regular crowding conditions, would be classified as being
counter-intuitive or irrational (Raveau et al., 2014). For example, it may happen
that users opt for longer routes in order to increase the chance of obtaining a seat
in the train, or prefer not to board a train or bus because it is considered too full
(although not reaching yet its full capacity). These behavioural responses reveal
the extent to which users dislike crowding in public transport. A further case in
point is provided by a user survey revealing that the attribute comfort, related
to overcrowding, was the worst evaluated attribute of Transantiago (Yï¿œï¿œez
et al., 2010), a critical issue if we consider that comfort has been reported as a
factor that reduce stress of public transport commuters (Legrain et al., 2015).

1There are three reasons for this sudden increase in Metro usage: an integrated fare system in
which users pay a very low fee for a bus-metro transfer; the redesign of parts of the bus network to
serve as feeders of the metro network; and the noticeable reduction of bus service quality in terms
of longer waiting and in-vehicle times, especially at the beginning of Transantiago
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Despite the large impact of crowding on quality-of-service, the optimization model
to design the Transantiago network (Fernï¿œndez et al., 2008) did not consider
quality-of-service factors such as passenger density and service reliability valuation
by users in the design of routes, optimal frequencies and vehicle sizes2. Instead the
optimization model minimized the summation of users and operator costs. In other
words, one minute travelling with five passengers per square meter was assumed
to have the same weight in the users’ cost function as one minute travelling with
one passenger per square meter, thereby ignoring the discomfort of crowding on
users.

Understanding and measuring the willingness to trade an increase in travel time
for improved travel conditions in terms of reduced crowding levels, and vice-versa,
is not only relevant for the planning of new public transport services, but also
for the management of currently operating routes and services and cost-benefit
analysis of policy interventions aimed at reducing crowding levels, either as a
primary or secondary goal. Crowding multipliers (Wardman and Whelan, 2011;
Tirachini et al., 2013) can be used for this objective. Crowding multipliers can
be interpreted as a measure of how the disutility of travel time under different
crowding levels relate to each other. Subsequently, they can be used to amplify
the (monetary) value of in-vehicle time savings in order to account for the fact
that reductions of travel time in crowded conditions are worth more than reducing
travel time on a similar but less crowded trip.

The literature on crowding valuation has progressed quickly during the past ten
years, and today we are aware of studies estimating the sensitivity of the value
of travel time savings (VTTS) to different vehicle or station crowding conditions
in Great Britain (Whelan and Crockett, 2009; Wardman and Whelan, 2011), the
Paris region (Kroes et al., 2014; Haywood and Koning, 2015), Sydney (Hensher
et al., 2011), Mumbai (Basu and Hunt, 2012), Los Angeles (Vovsha et al., 2013),
Singapore (Tirachini et al., 2016), Hong Kong (Lam et al., 1999; Hörcher et al.,
2017) and Santiago (Batarce et al., 2015), amongst other cities. Even in cycling
research it was recently found that crowding (with other bicyclists) significantly
influence route choice for bicyclists in Copenhagen (Vedel et al., 2017).

This paper makes a number of contributions to the crowding valuation literature.
First, we test the impact of the crowding representation format on the perceived
level of crowding, resulting travel behaviour and corresponding crowding valuation
measures. To this end a stated choice survey is designed in which occupancy levels
are presented to respondents either in the form of text, 2D diagrams or photos.
Other studies have also used images (2D diagrams and photos) to describe crowd-
ing levels. Use of images has shown to influence the perception of attributes of the

2In the design model, high occupancy of vehicles does not influence the perception of time but
may increase the extension of waiting time through limited capacity considerations (Fernï¿œndez
et al., 2008)
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alternatives on stated preferences surveys (Rizzi et al., 2012) and facilitates the de-
scription of complex choice scenarios, where an exhaustive text-based description
of the attributes would over-complicate the choice task (Motoaki and Daziano,
2015; Hurtubia et al., 2015). However, some evidence indicates that the form of
representation used to describe single attributes has no effect on the perception
of the respondent (Arentze et al., 2003).

Second, in this study the usual way to determine crowding externalities by means
of a stated choice model is complemented by questions on the relationship between
train occupancy and perceived levels of comfort and security, providing a link
between subjective user perceptions and observable train occupancies.

Third, this paper follows the recommendations of Basu and Hunt (2012) who ar-
gue that significant care is required when establishing crowding multipliers based
on Mixed Multinomial Logit (ML) models. In previous crowding valuation stud-
ies, user preferences have been estimated using Multinomial Logit (MNL) and ML
models. In the realm of MNL models, Wardman and Whelan (2011) develops a
meta-analysis of crowding multipliers using MNL values from 17 studies in Great
Britain. Ease of application in optimal public transport supply models is one
argument that has been used to support the use of MNL models in crowding valu-
ation (Tirachini et al., 2014). Most studies, however, highlight that (unobserved)
heterogeneity in crowding and time sensitivities is important to take into account.

Whelan and Crockett (2009)’s ML model assumes a normal distribution to in-
troduce unobserved heterogeneity in user preferences towards crowding levels in
trains, and find that around 25% of respondents have ‘wrong signed’ taste pa-
rameters. The authors, however, discard the use of the lognormal distribution as
a solution, given that it may shift the mean of the (crowding sensitive) VTTS
parameter. The referred study of Basu and Hunt (2012) for crowding valuation
in Mumbai, compares MNL and ML models using a triangular distribution for
travel time parameters for different crowding levels, as a way to avoid the issue
of large spreads in unconstrained distributions. In this study, we acknowledge the
limitations of the lognormal density, but prefer its use as the resulting densities for
the crowding multipliers are analytically tractable and much better behaved when
looking at the median values. Additionally, we contrast the MNL and ML models
to a Latent Class (LC) specification. Results show that significant heterogeneity
in crowding perception exist across the population, as exposed by estimated ML
and LC models. Gender, income and age are significant variables in explaining
heterogeneity in crowding disutility. MNL, mean LC and median ML models pro-
duce similar sitting and standing crowding multipliers for a given occupancy level,
unlike mean ML values which produce crowding multipliers that are unreasonably
high.

Finally, an international comparison of crowding multipliers with values found in
other cities is performed. We find that the Santiago Metro crowding multipliers
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are close to those previously found in the Paris Metro system (Kroes et al., 2014)
and in Hong Kong’s Mass Transit Railway (MTR) network (Hörcher et al., 2017)
On a more local level, this is the first article in which the value of sitting and
standing are separately estimated in Santiago.

The paper is organized as follows: Section B describes the survey and its main
results, while Section C focuses on the analysis of the relationship between crowd-
ing, comfort and perceived security. Section D describes the methodology for the
estimation of the proposed models. Section E shows and discusses results while
Section F compares Sanatiago’s crowding multipliers with those from other cities
and countries. Finally, Section G concludes the paper.

B Data Collection

A survey to measure the relevance of crowding in route choice was designed and
executed. In order to simplify the choice task, only metro-based alternatives were
considered and fare was excluded as an attribute (because in Santiago, within a
time period, the metro fare is fixed regardless of trip distance).

The main survey included seven sections:

1. Background and socio-economic characteristics: e.g. gender, age, income,
occupation and access to car.

2. Metro usage: average numer of times the respondent travels by metro each
week and characteristics of latest trip (origin, destination, travel time, crowd-
ing level).

3. Smartphone availability and use: if the respondent has a smartphone, and if
so, what (s)he uses it for while traveling by metro, and how frequently the
smartphone is used.

4. Stated choice (SC) component: six binary choice tasks in which the respon-
dent needs to choose between two alternatives for metro trips (see details
below).

5. Crowding perception: the respondent is asked about how secure and how
comfortable (s)he feels for three different crowding levels (low, medium and
high).

6. Crowding description: the respondent is asked which phrase most accurately
describes a specific crowding level shown on either a 2D diagram or a photo.

7. Trip perception and time use: the respondent is asked how (s)he feels about
particular situations like having to share a reduced space with strangers, if
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Figure 11: Example of stated choice task

(s)he likes to use a smartphone, read, listen to music, talk to people, etc.,
while travelling by metro.

In the SC component three attributes were used to characterize an alternative:
i) travel time, ii) occupancy level, and iii) whether the passenger has to stand
or can sit down during the trip. Travel time is pivoted around the travel time
of the respondent’s latest metro trip (question set 2). Five attribute levels are
specified around this base travel time (-25%, -12.5%, 0, +12.5% and +25%). The
crowding attribute was presented by means of six levels. The levels go from 1
(almost empty train) to 6 (completely full train). The way in which the crowding
attribute was presented to respondents varied across versions of the survey. We
used three alternative representation formats: i) text, ii) 2D diagrams (bird’s-
eye view), and iii) photos taken inside a metro car (edited with a photo edition
software, if necessary, to match with the exact number of persons required for a
particular passenger density level). In Figure 11 we show an example of a choice
task, as shown to respondents, in which train occupancy level is depicted by means
of a 2D diagram. The representation of all six occupancy levels and representation
formats are shown in Figures 17 and 18 and Table 15 the Appendix. In total,
a design of 12 choice tasks was constructed, grouped in two blocks of 6 tasks.
Each respondent was presented with a single block of choice tasks and a single
representation format.

The survey was programmed on the online survey platform Qualtrics. After a
pilot carried out in September 2014, the final survey was conducted in October
2014 by a private consultant. In the pilot, the SC survey was designed using an
orthogonal design; whereas for the final survey a D-efficient design was constructed
using the SC experimental design software NGene (Rose et al., 2008). Priors for
the parameters were obtained from the pilot study.

Two survey application methods were used: (a) online, in which the survey is
distributed by email to a panel of respondents from the consultant, (b) face-
to-face, in which surveyors with tablets interview metro users outside selected
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Table 8: Income profile network versus survey

Total Metro Survey
Household income Personal income

(Euro/month) Percent. Accum. (Euro/month) Percent. Accum.
0 - 448 18% 18% 0 - 299 15% 15%

448 - 1,194 46% 65% 299 - 597 20% 35%
1,194 - 2,090 22% 86% 597 - 896 19% 54%
2,090 – 2,836 8% 94% 896 – 1,493 16% 70%
2,836 – 3,731 3% 97% 1,493 – 2,239 11% 81%
3,731 or higher 3% 100% 2,239 or higher 19% 100%

stations. The total number of correct complete surveys is 413 (210 online surveys,
203 face-to-face surveys). The sampling strategy attempted to resemble the income
profile of Santiago´s metro users, as described by a network-wide origin-destination
survey performed by the Metro company in 2013. Accordingly, Metro stations with
different user income profile were chosen. The percentage of users by income range
in both the total network survey and our survey is shown in Table 8.

From Table 8, likely there is a slight over-representation of higher-income users
in our sample, as 70% and 81% of our respondents have personal incomes lower
than 1,493 and 2,239 Euros, whilst on the network 86% of users report a household
income lower than 2,090 Euros. However, there is no indication of large differences
in income between the two samples. Regarding gender and age representation, 55%
of metro users in Santiago are women (47% female respondents in our survey) and
48% of metro users are 29 years old or younger (30% of respondents in our survey
are in that age range). The fact that our survey was applied only to adults partially
explains the under-representation of young users in our sample.

C The relationship between occupancy level, per-
ceived comfort and security

In this section we focus on the relationship between occupancy levels in Metro
trains, as shown to survey respondents in section five of the survey, and their
perceived level of comfort and security. Out of the six levels for the crowding
attribute (see Appendix) three were shown to the respondents 3. This was done
after the SP part of the survey in order to not influence response patterns. For
each of the three levels the following questions were asked:

• How secure do you feel to travel in these conditions? (security with respect
3the three levels were randomly chosen between crowding levels 1 and 2, 3 and 4, and 5 and 6
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to theft, or physical and psychological threat)

• How comfortable do you feel to travel in these conditions?

Respondents had to rate each level of occupancy on a 1 to 7 Likert scale, where
1 meant very insecure (very uncomfortable), and 7 meant very secure (very com-
fortable). The 1 to 7 scale has the advantage of been highly intuitive in Chile since
it is the scale of marks in the Chilean education system (where 7 is the maximum
possible mark, 1 is the lowest mark and 4 is the minimum mark to pass). Results
of the average score for the six occupancy levels are shown in Fig. 12 where, to ease
understanding, all six levels are shown with their respective 2D representation.

Figure 12: Average security and comfort levels for different occupancy levels

On average, users do not perceive a difference in comfort or security between
levels 1 and 2 or occupancy, in which all passengers are sitting, and therefore it
can be suggested that the main variable affecting both security and comfort is the
presence of standees (in fact, both scores are 0.1 points higher in level 2, but the
difference is not statistically significant at the 5% level). Due to the presence of
standees the level of comfort drops quicker than the level of safety between levels
2 and 3. From level 3 and above, the perceived security has a higher average mark
than perceived comfort. Notably, between levels 4 to 6 perceived comfort and
security are dropping at a similar pace.

A more detailed analysis can be presented by moving beyond average scores. To
ease understanding, we only present histograms of answers for occupancy levels 1
(the lowest), 3 (medium) and 6 (the highest), for all forms of crowding representa-
tion shown to respondents (see Fig. 13). It is interesting to note that there is more
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variation in the answers to the security question than in the answers to perceived
comfort. For instance, respondents clearly relate an almost empty train with a
high level of comfort (Fig. 13b), however less than 50% of respondents feel that
situation as “very secure” (Score 7 in Fig. 13a). This finding is in line with the
hypothesis of Cox et al. (2006), who state that the relationship between security
and train occupancy varies by crime type, as muggings are more likely to happen
in crowded trains but assaults are more likely to happen in empty trains. A sim-
ilar outcome is observed with the histograms of occupancy level 6 (Fig. 13e and
13f), which 68-70% of respondent perceive as “very uncomfortable”, but less than
50% of respondents perceive it as “very insecure”. Therefore, there exists a more
straightforward relationship between occupancy and the perception of comfort,
than between occupancy and the perception of (in)security. Regarding gender dif-
ferences, it is observed than men tend to feel more secure but less comfortable in
an almost empty train than women (Fig. 13a and 13b), however, when comparing
mean scores there are no significant differences for gender.

With respect to differences in perception of security and comfort among the forms
of representation for occupancy, Fig. 14 shows average scores for all occupancy
levels. No discernible tendency is observed in the perception of security. In the case
of comfort perception, it is found that for low and medium occupancy levels the
text representation has a lower average score than 2D and Photo, which may point
towards a misrepresentation of the actual comfort conditions of a text explanation
compared against graphical forms.

Overall, we find that feelings of insecurity and discomfort increase with density
and number of passengers standing in a metro carriage.

D Choice modelling: methodology

In this section we introduce the discrete choice models used to estimate crowding
multipliers for Santiago’s Metro system. Our survey included a binary stated
choice (SC) component, in which each choice task presented two alternative metro
routes to the respondent, as previously depicted by Fig. 11. The choice between
scenarios 1 and 2 in choice task situation t = 1, . . . , T for individual n = 1, . . . ,N

is modelled using the following random utility maximization (RUM) specification:

U1nt = βTTTT1nt + βTTdens[TT1nt × dens1nt] + βTTdensST [TT1nt × dens1nt × 1stdg1nt
] + ε1nt

U2nt = βTTTT2nt + βTTdens[TT2nt × dens] + βTTdensST [TT2nt × dens2nt × 1stdg2nt
] + β0 + ε2nt(6)

where TTint is travel time in alternative i (min), densityint is passenger den-
sity (pax/m2) and 1stdgint

is a binary variable indicating whether the passenger is
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(a) Occupancy level 1, security (b) Occupancy level 1, comfort

(c) Occupancy level 3, security (d) Occupancy level 3, comfort

(e) Occupancy level 6, security (f) Occupancy level 6, comfort

Figure 13: Perceptions of security and comfort, share of responses per score level
for three ocupancy levels

(a) Security (b) Comfort

Figure 14: Average scores security and comfort per form of representation
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standing or not. β = (β0, βTT , βTTdens, βTTdensST) then represents a vector of cor-
responding preference parameters, and εint denotes the error term. The latter is
assumed to follow a Type-I extreme value distribution such that logit type models
can be estimated (Train, 2009) using the well-known MNL choice probabilities:

PMNLn =
T∏
t=1

[
exp(x ′

1ntβ)

exp(x ′
1ntβ) + exp(x ′

2ntβ)

]y1nt
[

exp(x ′
2ntβ)

exp(x ′
1ntβ) + exp(x ′

2ntβ)

]y2nt

(7)

where x1nt = (0, TT1nt, TT1nt×dens1nt, TT1nt×dens1nt×1standing1nt
), x2nt = (1, TT2nt, TT2nt×

dens2nt, TT2nt×dens2nt×1standing2nt
), and where yint = 1 if alternative i was chosen

in choice situation t.

The above model specification is motivated by previous model specifications used
to derive crowding multipliers (e.g. Whelan and Crockett, 2009; Wardman and
Whelan, 2011; Tirachini et al., 2013). Passenger load (i.e. density measures)
are interacted with travel time to represent a higher dis-utility of crowding for
longer trips; and if the passenger is standing then there is empirical evidence
that crowding is even more bothersome (Wardman and Whelan, 2011). These
hypotheses are in line with our results in Section C. The crowding multipliers
can accordingly be derived as the marginal utility of travel time under crowding
conditions over marginal utility of travel time under non-crowded conditions:

CMsitting =
βTT + βTTdensdens

βTT
= 1+ λ1 · dens (8)

CMstanding =
βTT + βTTdensdens+ βTTdensSTdens

βTT
= 1+ (λ1 + λ2) · dens

βTT is the travel time parameter, whereas βTTdens and βTTdensST are the parameters
associated with the product between travel time and density for sitting and stand-
ing, respectively. Moreover λ1 = βTTdens

βTT
and λ2 = βTTdensST

βTT
. Therefore, CMsitting

represents the crowding multiplier for a passenger who is seated, and CMstanding is
the respective multiplier for a standing passenger. Standard errors for the crowd-
ing multipliers will be calculated using the Delta method (Daly et al., 2012). We
will specifically test for differences in the crowding multipliers across the alterna-
tive representation formats of the crowding attribute.

The second specification is the mixed logit model where we assume there is un-
observed heterogeneity in βn across respondents. The heterogeneity is captured
by a mixing density of the form f(βn|θ), where θ represents the hyper parameters
characterising the mixing density, such as the mean and standard deviation. As
a result the expected choice probability for observing the sequence of choices by
individual n is now given by:
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PMLn =

∫
βn

T∏
t=1

[
exp(x ′

1ntβn)

exp(x ′
1ntβn) + exp(x ′

2ntβn)

]y1nt
[

exp(x ′
2ntβn)

exp(x ′
1ntβn) + exp(x ′

2ntβn)

]y2nt

f(βn|θ)dβn

(9)

We explicitly account for the fact that βTTn ,βTTdensn and βTTdensSTn are expected to
be negative by specifying a lognormal mixing density. The benefit of using a
lognormal density is that the λ parameters in Eq. 8 have finite moments (and
therefore also the crowding multipliers) (e.g. Daly et al., 2011) and are analytically
tractable. Hence, there is no need for simulation exercises after estimation.

The third specification is derived according to the Latent Class model (Greene
and Hensher, 2003). If we assume that the parameters βn are random with a
discrete instead of a continuous heterogeneity distribution, then for class q utility
becomes:

U
(q)
1nt = β

(q)
TT TT1nt + β

(q)
TTdens[TT1nt × dens1nt] + β

(q)
TTdensST [TT1nt × dens1nt × 1stdg1nt

] + ε
(q)
1nt

U
(q)
2nt = β

(q)
TT TT2nt + β

(q)
TTdens[TT2nt × dens2nt] + β

(q)
TTdensST [TT2nt × dens2nt × 1stdg2nt

] + β
(q)
0 + ε

(q)
2nt(10)

where β = β(q) with probability w(q)
n = exp(z ′

nγ
(q))/

∑Q
q=1 exp(z

′
nγ

(q)), with zn
denoting sociodemographic characteristics of the individual and where the class-
specific constant γ(1) = 0 is normalised. We assume assignment to class is influ-
enced by gender, age and income.

w1n =
1

1+ exp(γ(2) + γmale1malen + γageagen + γincincn

w2n =
exp(γ(2) + γmale1malen + γageagen + γincincn)

1+ exp(γ(2) + γmale1malen + γageagen + γincincn)
(11)

where agen, incn and 1malen stand for age in years, personal income range and
whether individual n is a male, respectively.

In this latent class model, the probability of the observed sequence of choices for
an individual is given by:

PLCn =

2∑
q=1

{
w(q)

n

T∏
t=1

[
exp(x ′

1ntβ
(q))

exp(x ′
1ntβ

(q)) + exp(x ′
2ntβ

(q))

]y1nt [ exp(x ′
2ntβ

(q))

exp(x ′
1ntβ

(q)) + exp(x ′
2ntβ

(q))

]y2nt
}
.

(12)

The maximum likelihood estimator of the full vector of parameters θ can be de-
rived by plugging the correct Pn into argmaxθ `(y|X;θ) =

∑N
n=1 ln(Pn(θ)). In the
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Table 9: Basic MNL

Coefficients Estimate Std. Error t-value Pr(>|t|)
intercept (i = 2) 0.130 0.042 3.136 0.002 **
TT -0.101 0.010 -10.306 < 2.2e-16 ***
TTdens -0.010 0.001 -10.086 < 2.2e-16 ***
TTdensST -0.007 0.001 -6.950 0.000 ***
Log-Likelihood: -1628.8
McFadden R^2: 0.043777

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

case of the Mixed Logit model, the likelihood needs to be simulated by considering
a Monte Carlo approximation of Pn for which we use 1,500 halton draws.

E Choice modelling: results

E.1 Estimation results

Results for the basic multinomial logit model (MNL) are presented in Table 9.4

All parameter estimates are significant and have the expected sign. The intercept
for alternative 2 is significant and indicating a potential bias towards choosing the
alternative presented on the right hand side. Left-right bias is not uncommon in
the stated choice literature. Such effects, however, often become less pronounced
when moving towards more sophisticated model structures. Note that we also
tested whether there was a penalty for standing during the length of the trip irre-
spective of the occupancy level, but this parameter turned out to be insignificant
and was therefore not presented.

The second MNL model (Table 10) examines the impact of the crowding represen-
tation format on occupancy perceptions and, accordingly, behavioural responses.
During the analysis, the 2D diagrams were considered as the referential crowd-
ing representation format. Table 10 reveals that perception bias is not present in
our dataset. On the one hand, this is reassuring as the alternative representation
formats were carefully developed. On the other hand, this is a remarkable re-
sult considering the amount of cognitive effort required from the respondent when
being presented with a text description of crowding levels (see Table 15 in the
Appendix). Since the representation format has no impact on the model results,
the respective control variables are excluded in the remaining analyses.

Results for the ML and LC model are presented in Tables 11 and 12. Both models
reveal a significant improvement in model fit over the MNL base model, highlight-
ing there is substantial heterogeneity in sensitivities to travel time and crowding

4All models are estimated using the R package gmnl (Sarrias and Daziano, 2015)
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Table 10: Basic MNL accounting for type of crowding representation

Coefficients Estimate Std. Error t-value Pr(>|t|)
2:(intercept) 0.131 0.042 3.137 0.002 **
TT -0.101 0.010 -10.303 < 2.2e-16 ***
TTdens -0.011 0.001 -8.107 0.000 ***
TTdensST -0.006 0.002 -4.013 0.000 ***
TTdens (photo) 0.002 0.001 1.124 0.261
TTdens (text) 0.000 0.002 0.240 0.810
TTdensST (photo) -0.001 0.002 -0.350 0.727
TTdensST (text) -0.002 0.002 -0.835 0.404
Log-Likelihood: -1627.6

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

levels across respondents. In the ML model there is still a tendency to prefer the
right alternative, but this effect is no longer significant in the LC model. After
transformation of the lognormal parameters, the median (and mean) travel time
and crowding level sensitivities are all higher compared to the basic MNL model,
but these values are surrounded by significant heterogeneity. We provide a more
detailed discussion when looking at the crowding multipliers, which are the model
outcomes of interest. The LC model indicates that an individual is more likely
to belong to Class 2 if (s)he is male, young and has higher income.5 Travellers
belonging to Class 2 are very sensitive to travel time, but much less sensitive to
crowding levels than members of Class 1. This is a reasonable result regarding
the role of age and gender in the class membership equation, but not necessarily
regarding income as wealthier passengers might be more negatively affected by a
large passenger density than lower income travellers, as found by Haywood et al.
(2017) in Paris. We explain the observed effect as a result of higher income people
being more adverse to long travel times, i.e. having higher values of time. This
is, however, an inconclusive interpretation given that in our survey the trade-off
between travel time, level of train occupancy and trip fare was not present, as
fare was not an attribute in the SP experiment. We now turn to the crowding
multipliers derived from the above models.

E.2 Crowding Multipliers

Table 13 presents the crowding multipliers when metro users are able to sit whilst
travelling. When there are no other passengers standing, i.e. pax/m2 = 0, the

5We experimented with models having more than two classes and allowing for unobserved
preference heterogeneity within classes. However, this respectively resulted in counter-intuitive
parameter estimates and signs of model over-specification. Also ML and LC models in ‘time
space’, i.e. directly estimating the crowding multipliers, were estimated. These did not offer
additional insights
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Table 11: ML model using lognormal mixing densities

Coefficients Estimate t-stat p-value Sign.
Intercept (i = 2) 0.175 2.963 0.003 **
TT - µ -1.596 -12.753 0.000 ***
TTdens - µ -3.791 -27.105 0.000 ***
TTdensST - µ -4.561 -18.583 0.000 ***
TT - σ 1.012 7.931 0.000 ***
TTdens - σ 1.498 11.078 0.000 ***
TTdensST - σ 1.813 10.415 0.000 ***
Log-Likelihood: -1404.9
obs 2467
n 413
draws 1500
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 12: Latent Class Model

Coefficients Estimate t-stat p-value Sign.
Class 1: Intercept (i = 2) 0.115 1.472 0.141
Class 1: TT -0.090 -4.127 0.000 ***
Class 1: TTdens -0.029 -11.563 0.000 ***
Class 1: TTdensST -0.021 -6.511 0.000 ***
Class 2: Intercept (i = 2) 0.173 1.898 0.058 .
Class 2: TT -0.223 -13.258 0.000 ***
Class 2: TTdens -0.005 -3.539 0.000 ***
Class 2: TTdensST -0.010 -6.964 0.000 ***
Class Membership (class 2)
Intercept 0.268 1.868 0.062 .
Gender 0.394 3.877 0.000 ***
Age -0.022 -6.555 0.000 ***
Income 0.446 4.192 0.000 ***
Log-Likelihood: -1456.8
obs 2467
n 413

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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‘regular’ value of travel time savings applies, irrespective of the preferred model
specification. As expected, the crowding multipliers are increasing with passenger
density, showing that increased crowding levels increase the disutility of travel
time. Metro users are therefore willing to accept longer travel times in return for
less crowded conditions. Subsequently assuming metro users are also willing to
pay for reductions in travel time, allows us to infer they are willing to pay more
for reductions in travel time under crowded conditions. This willingness-to-pay
increases with crowding density.

The multiplicative relation between λ and density in equation (8), however, also
causes the standard error of the crowding multiplier to go up with density (pax/m2).
This is consistent across the three model specifications. Standard errors increase
further when moving from the MNL model to the more complex ML and LC
models. The latter increase in the standard error is caused by introducing a more
flexible model specification. Standard errors are notably higher for the mean
crowding multipliers of the ML model and for Class 1 of the LC model than for
the Median ML model and Class 2 of the LC model. In the ML model, the fat
upper tail of the lognormal distribution causes both the mean and the standard
error of the crowding multipliers to go up. People with a high crowding sensitiv-
ity have less of an impact on the median crowding multiplier. In ML models it
is not uncommon to find that the median of the mixing density, or its WTP-like
transformation, is most comparable to the MNL estimates. This is a direct result
of the density’s tails having a smaller impact on the median than on the mean
(e.g. Borjesson et al., 2012). The tail of the distribution also has an impact on the
Class 1 crowding multipliers of the LC model, but this effect is less pronounced
due to the estimation of only a discrete number of classes rather than a continuous
distribution as done by the ML model.

For the ML model, the median crowding multipliers closely correspond to those
for the MNL model. As discussed above, the fat-tail of the lognormal density
spurs the mean of the ML crowding multipliers up to an unreasonably high level
relative to the values usually found in the extant literature (sitting multipliers not
larger than 2, and standing standing usually not larger than 3, even under very
crowded conditions). On the other hand, median estimations (up to 1.7 for sitting
and 2.0 for standing) are very similar to those of the MNL model and within
the range of values found in e.g., Great Britain (Wardman and Whelan, 2011).
Regarding our mean ML values, it is often not recommended to use such high
values for policy evaluations and in many national value of time savings studies
(e.g. Borjesson et al., 2012) censoring approaches are applied accordingly. The LC
model, however, provides a more reasonable alternative where part of the sample
has a high crowding multiplier, which is somewhat tempered by a second latent
class of travellers experiencing only a limited disutility of crowding.

A very similar story emerges from Table 14. The crowding multipliers of MNL
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Table 13: Crowding multipliers: Sitting conditions

MNL ML LC
Mean Mean Median Class 1 Class 2

pax/m2 Est. St. Err Est. St. Err Est. St. Err Est. St. Err Est. St. Err
0 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -
1 1.10 0.01 1.57 0.16 1.11 0.01 1.33 0.06 1.02 0.01
2 1.20 0.01 2.14 0.32 1.22 0.03 1.65 0.12 1.04 0.01
3 1.30 0.02 2.71 0.49 1.33 0.04 1.98 0.18 1.06 0.02
4 1.40 0.03 3.28 0.65 1.45 0.06 2.30 0.24 1.08 0.02
5 1.50 0.03 3.85 0.81 1.56 0.07 2.63 0.29 1.10 0.03
6 1.60 0.04 4.42 0.97 1.67 0.08 2.95 0.35 1.13 0.03

model are highly comparable to median ML value. The mean ML crowding mul-
tipliers and associated standard errors are again unreasonably high for which the
LC model provides a more acceptable alternative.

In the Latent Class model we observe quite different crowding multipliers when
comparing Classes 1 and 2, as shown in Tables 13 and 14: Class 1 (more likely
higher income younger males) has very large crowding multipliers with mean val-
ues 2.95 for sitting and 4.33 for standing with 6 pax/m2, whilst Class 2 have lower
multipliers of 1.13 and 1.39 for the same density of standees. When computing
average multipliers for both classes combined, taking into account the probability
of class membership for all respondent in the sample, we obtain an average mul-
tiplier that go up to 2.1 for sitting and 3.0 for standing. These values are larger
than the crowding multipliers implied by the MNL and (median) ML values, as
shown in Fig. 15, and also seem to be too large when compared to most of the
existent international literature. We conclude that even though there is quite a
substantial amount of heterogeneity in users aversion to crowding, a good indica-
tion of crowding multipliers for the population would be values up to 1.5-1.6 for
sitting, and up to 2.0-2.3 for standing, for a density of standees of 6 pax/m2.

The actual levels of the crowding multipliers will be contrasted against other
national and international measures in Section F.

F International Comparisons

We compare our median ML multipliers with those of London and South East
(SE) England (Whelan and Crockett, 2009), the Paris region (Kroes et al., 2014),
Singapore (Tirachini et al., 2016), Hong Kong (Hörcher et al., 2017) and Swedish
cities (Bj́’orklund and Sẃ’ardh, 2015). Crowding multipliers for sitting and stand-
ing are shown in Fig. 16a. Sitting multipliers in Santiago are almost equal to those
recently estimated in Hong Kong and not far from those in Paris and London SE,
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Table 14: Crowding multipliers: Standing conditions

MNL ML LC
Mean Mean Median Class 1 Class 2

pax/m2 Est. St. Err Est. St. Err Est. St. Err Est. St. Err Est. St. Err
0 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 NA
1 1.17 0.01 2.02 0.29 1.16 0.02 1.56 0.09 1.07 0.01
2 1.33 0.02 3.03 0.59 1.33 0.04 2.11 0.18 1.13 0.01
3 1.50 0.03 4.05 0.88 1.49 0.06 2.67 0.27 1.20 0.02
4 1.67 0.03 5.06 1.17 1.65 0.08 3.22 0.36 1.26 0.03
5 1.84 0.04 6.08 1.47 1.81 0.10 3.78 0.45 1.33 0.03
6 2.00 0.05 7.10 1.76 1.98 0.11 4.33 0.54 1.39 0.04

Figure 15: Comparison of implied crowding multipliers: MNL, ML, LC models
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whereas Sweden has lower sitting multipliers (up to 1.15 for 4 pax/m2). For stand-
ing, the estimated multipliers in Santiago are similar to those in Paris, slightly
lower to those in Hong Kong and clearly lower to those estimated in Sweden and
London SE.

On the other hand, Fig. 16b depicts the value of having a seat, that is the ratio
between the standing and sitting multipliers. We find the Santiago values closer
to those of the Paris Metro system for sitting and standing. The value of having
a seat in Santiago and Paris are for the most part between 1.10 and 1.15, which
means that travel time is valued between 10 and 15 percent more when standing
than when sitting. The value of having a seat in Hong Kong is estimated between
1.15 and 1.27, and is a decreasing function of the density by construction of the
model (Hörcher et al., 2017). The London SE value of a seat is much higher at
1.44, which is possibly explained by a longer trip distance in the British study
(it includes interurban travel) and having trains with more seats. As shown in
the diagrams, in Santiago metro trains have very few seats and the probability of
getting a seat is close to zero in peak hours (except for users that board trains at
the first station of a line), and therefore people may not give a great value to having
a seat since they are used to stand. The value of having a seat in Singapore’s MRT
was estimated between 1.18 and 1.24, a value that lies between those in Santiago
and London. Therefore, we conclude that with evidence from four urban heavy rail
systems, value of travel time savings when travelling standing should be around
1.10-1.26 larger than the value of travel time savings when sitting, a value that
likely increases for suburban or interurban longer trips.

(a) Crowding multipliers (b) Standing multipliers

Figure 16: International comparison for crowding and standing multipliers. Own
elaboration based on Whelan and Crockett (2009), Kroes et al. (2014), Tirachini
et al. (2016) and Bj́’orklund and Sẃ’ardh (2015)
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G Conclusions

Mode choice models where crowding is one of the main explanatory variables were
estimated. A basic Multinomial Logit (MNL) model, a Latent Class (LC) model
and a Mixed Logit (ML) model were estimated and crowding multipliers were com-
puted for each of them. Additionally, the relevance of the type of representation
of the crowding level was tested, showing it has no significant effect.

Results show that crowding is relevant to explain user behaviour in Santiago, and
that different travel time multipliers for sitting and standing could be estimated.
The quantification of the crowding effect and the value of having a seat has the
potential to influence project appraisal, allowing to consider different benefits for
users under different crowding conditions. This would have been of use, for exam-
ple, in the public transport design model for Santiago, where it was assumed that,
while travelling, one minute is worth the same regardless of crowding conditions in
trains or buses. Our results can be used to estimate the value of increasing service
frequency, increasing train size or increasing the number of seats as measures to
improve the service quality. We found that the sitting multiplier is up to 1.5-1.6
for a density of standees of 6 pax/m2, whereas the standing multiplier goes up to
a value between 1.9 and 2.2 for the same density. The MNL and the median ML
were not far from each other, which in the case of Santiago allows us to infer that
for policy evaluation the use of crowding multipliers from a simple MNL model is
enough to model the crowding sensitivity of the population as a whole. However,
significant heterogeneity is present in our sample, which could be picked up by
both ML and LC models. We used a latent class model to differentiate between
groups of users that have different preferences. The group with low crowding sen-
sitivity is more likely to be populated by younger people, males and users with
higher income, whereas the group that is more sensitive to crowding is more likely
to have females, older people and lower income travellers.

Regarding policy implications, the estimated crowding multiplier should be tried
in the evaluation of changes to the existing metro network and service in, for
example, the number of seats per train or increasing/reducing the service frequency
in peak and off-peak periods (as analysed by Tirachini et al. (2014) for buses and
de Palma et al. (2015) for trains). Without a crowding disutility, increasing train
frecuency only has a value on reducing waiting time. The approach presented here
can be used to estimate the effect of that intervention on the comfort of travel
time, for a real metro line in Santiago.

Finally, when comparing the results obtained in this article with the extant litera-
ture, it is interesting to analyse the similarities of the Santiago results in particular
to those of Paris and Hong Kong, taking into account the fact that the research
methods used by the authors and the contexts are different: in Santiago and Paris,
stated preferences have been used while in Hong Kong revealed preferences have
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been inferred using large automatic fare collection (AFC) and automatic vehicle
location (AVL) databases. Importantly, we cannot confirm that crowding multi-
pliers obtained from stated preferences might be larger than those from revealed
preferences, as suggested by Kroes et al. (2014) and Hörcher et al. (2017), because
we found mixed results when comparing different cities and research methods.
The advent of large AFC and AVL databases for the estimation of crowding and
standing externalities (as recently advanced by Tirachini et al. (2016) and Hörcher
et al. (2017), with the implementation of route choice methods) paves the way for
the extended use of revealed preferences for the economic analysis of crowding
discomfort and other quality-of-service attributes in the near future. It is ex-
pected that as more RP-based results arise, a clearer picture of potential stated
preferences biases will be obtained.
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Appendix: Crowding representations in the SC ex-
periments

Three different types of representation of the crowding level were used in the SC
experiments: 2d diagrams, photos and text descriptions. Because it offers the
possibility of depicting standing passenger density in a very accurate way, the 2D
diagram was built as the referential way to represent crowding. Figure 17 shows
the 6 crowding levels and their corresponding representation with 2D diagrams
while Figure 18 shows the corresponding photos used for each level. Table 15
shows the text used to represent each of level.

Figure 17: Crowding levels using 2D diagrams
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Figure 18: Crowding levels using photos
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Table 15: Crowding levels using text

level Description
1 Less than half of seats are occupied. No one is standing.
2 More than half of seats are occupied. No one is standing.
3 All seats are occupied. Few people standing, there is no difficulty moving.
4 All seats are occupied. People standing, minor difficulty moving.
5 All seats are occupied. Many people standing, it is difficult to move.
6 All seats are occupied. Maximum number of people standing, maximum difficulty to move.
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